1182. Molecular Polarisability. Polarities, Polarisabilities, and Conformations of the Oxides and Sulphides of the Group Vв Triphenyls.

By M. J. Aroney, R. J. W. Le Fèvre, and J. D. Saxby.

Dipole moments (D) and molar Kerr constants ($\times 10^{12}$) are reported for $\mathrm{Ph}_{3} \mathrm{PO}$ (4.49; -828), $\mathrm{Ph}_{3} \mathrm{PS}\left(4 \cdot 79 ;-446\right.$), $\mathrm{Ph}_{3} \mathrm{AsO}$ (5.41; -1300), $\mathrm{Ph}_{3} \mathrm{AsS}$ (5.31; -447), and $\mathrm{Ph}_{3} \mathrm{SbS}(5 \cdot 66 ;-523)$ as solutes in benzene at 25°. The data are analysed in terms of apparent molecular conformations. The phenyl rings in $\mathrm{Ph}_{3} \mathrm{PO}$ and $\mathrm{Ph}_{3} \mathrm{PS}$ are rotated (in the same sense to preserve C_{3} symmetry) through angles of 60° and 62°, respectively, from a theoretical model in which the Ph planes are parallel to the molecular symmetry axis. The conformations of $\mathrm{Ph}_{3} \mathrm{As}$ and $\mathrm{Ph}_{3} \mathrm{Sb}$ appear to be not greatly affected by the formation of $\mathrm{As}=\mathrm{O}$, As-S, or $\mathrm{Sb}-\mathrm{S}$ bonds.

This paper deals with relationships between the anisotropies of polarisability and the apparent conformations of the oxides and sulphides of the triphenyl derivatives of the Group VB elements, examined as solutes at high dilution in benzene at 25°. The experimental results are summarised under usual ${ }^{1,2}$ headings in Tables 1 and 2.

[^0]
Table 1.

Incremental Kerr constants, dielectric constants, densities, and refractive indices for solutions in benzene at 25°.

Triphenylphosphine oxide

$10^{5} w_{2}$	503	917	970	1074	1433	1712	1970
$-10^{7} \Delta B$	0.073	0.148	0.134	0.161	0.212	0.248	-
$10^{4} \Delta n$	6	-3.12	12	13	18	-	24
$\varepsilon^{25} \Delta$	-	2.3491	2.3523	2.3605	2.3938	2.4149	2.4366
$d_{4}{ }^{25}$	0.87512	0.87636	-	0.87642	0.87754	0.87809	0.87883

whence $\Sigma 10^{7} \Delta B / \Sigma w_{2}=-14.8 ; \Sigma \Delta n / \Sigma w_{2}=0.123 ; \Sigma \Delta \varepsilon / \Sigma w_{2}=8.32 ; \Sigma \Delta d / \Sigma w_{2}=0.259$
Triphenylphosphine sulphide

$10^{5} w_{2}$	548	779	1100	1408	1846	2859	
$-10^{7} \Delta B$	0.039	0.040	0.085	0.110	0.122	0.178	
whence $\Sigma 107 \Delta B / \Sigma w_{2}=-6.72$							
$10^{5} w_{2}$	751	900	970	1049	1462	1490	2252
$10^{4} \Delta n$	11	14	15	16	23	24	34
ε^{25}	2.3406	-	2.3601	-8	2.4039	2.4069	2.4764
$d_{4}{ }^{25}$	-	0.87615	0.87631	0.87653	-	0.87774	0.87961

whence $\Sigma \Delta n / \Sigma w_{2}=0.154 ; \Sigma \Delta \varepsilon / \Sigma w_{2}=9.03 ; \Sigma \Delta d / \Sigma w_{2}=0.262$

Triphenylarsine oxide							
$10^{5} w_{2}$	387	521	630	720	815	982	1261
$-10^{7} \Delta B$	-	0.102	0.122	0.142	0.174	0.190	0.262
$10^{4} \Delta n$	5	-	7	8	9	9	16
ε^{25}	2.3104	2.3285	2.3344	2.3476	-	2.3765	-
$d_{4}{ }^{25}$	0.87517	-	0.87596	0.87629	0.87651	0.87704	0.87823

whence $\Sigma 10^{7} \Delta B / \Sigma w_{2}=-20.1 ; \Sigma \Delta n / \Sigma w_{2}=0.113 ; \Sigma \Delta \varepsilon / \Sigma w_{2}=10.3 ; \Sigma \Delta d / \Sigma w_{2}=0.345$

		Triphenylarsine sulphide			
$10^{5} w_{2}$	347	380	604	850	1017
$-10^{7} \Delta B$	0.017	$0 \cdot 020$	0.034	0.047	0.059
$10^{4} \Delta n$	6	5	8	12	15
ε^{25}	$2 \cdot 3067$	$2 \cdot 3090$	$2 \cdot 3311$	$2 \cdot 3521$	2.3699
$d_{4}{ }^{25}$	$0 \cdot 87494$	$0 \cdot 87503$	$0 \cdot 87571$	0.87658	$0 \cdot 87716$

whence $\Sigma 10^{7} \Delta B / \Sigma w_{2}=-5.54 ; \Sigma \Delta n / \Sigma w_{2}=0.144 ; \Sigma \Delta \varepsilon / \Sigma w_{2}=9.58 ; \Sigma \Delta d / \Sigma w_{2}=0.329$

Triphenylstibine sulphide									
$10^{5} w_{2}$	440	441	544	729	864	1119	1185	1291	1733
$-10^{7} \Delta B$	0.028	0.024	-	-	0.054	0.061	-	0.075	-
$10^{4} \Delta n$	5	-	7	8	11	14	15	16	22

whence $\Sigma 10^{7} \Delta B / \Sigma w_{2}=-5 \cdot 83 ; \Sigma \Delta n / \Sigma w_{2}=0.124$

$10^{5} w_{2}$	541	544	729	982	1185	1733
ε^{25}	2.3205	2.3221	2.3392	2.3627	2.3784	2.4255
$d_{4}{ }^{25}$	0.87586	0.87584	0.87647	0.87733	0.87824	0.88029

whence $\Sigma \Delta \varepsilon / \Sigma w_{2}=8.99 ; \Sigma \Delta d / \Sigma v_{2}=0.374$

Table 2.
Dielectric polarisations, dipole moments, and molar Kerr constants
(from observations on solutions at 25°).

Solute	$\alpha \varepsilon_{1}$	β	γ	δ	$\infty_{\infty} P_{2}$ (c.c.)	$R_{\text {D }}$ (c.c.)	$\mu(\mathrm{D})^{*}$	$10^{12} \infty\left({ }_{m} K_{2}\right)$
$\mathrm{Ph}_{3} \mathrm{PO}$	8.32	$0 \cdot 296$	0.082	-36.1	502.3	$85 \cdot 2$	$4 \cdot 49$	-828
$\mathrm{Ph}_{3} \mathrm{PS}$	9.03	$0 \cdot 300$	$0 \cdot 103$	$-16 \cdot 4 \dagger$	$570 \cdot 1$	$95 \cdot 0$	$4 \cdot 79$	-446
$\mathrm{Ph}_{3} \mathrm{AsO}$	$10 \cdot 3$	$0 \cdot 395$	0.075	-49.0	$690 \cdot 6$	$86 \cdot 2$	$5 \cdot 41$	-1300
$\mathrm{Ph}_{3} \mathrm{AsS}$	9.58	$0 \cdot 377$	0.096	$-13.5 \dagger$	$681 \cdot 4$	98.5	$5 \cdot 31$	-447
$\mathrm{Ph}_{3} \mathrm{SbS}$	8.99	0.428	0.083	-14.2 \dagger	726.4	101.2	$5 \cdot 66$	-523

* Calculated assuming ${ }_{\mathrm{D}} P=1.05 R_{\mathrm{D}}$.
\dagger Some difficulty was experienced in the measurement of the electric birefringences of the sulphides;
these were determined, in part, photometrically with the assistance of Mr. G. L. D. Ritchie.

Experimental

Materials, Apparatus, etc.-Substances were presented to us by the Metal and Thermit Corporation, U.S.A. (triphenylphosphine oxide and sulphide, and triphenylstibine sulphide) and Messrs. R. Armstrong and D. C. Weatherburn, University of Sydney (triphenylarsine oxide and sulphide). Recrystallisation (solvent given in parentheses), and drying over phosphorus pentoxide in vacuo, yielded: triphenylphosphine oxide, m. p. 158° (benzene); triphenylphosphine sulphide, m. p. 166° (ethanol) ; triphenylarsine oxide, m. p. 197° (ethanol); triphenylarsine sulphide, m. p. 162° (ethanol); triphenylstibine sulphide, m. p. 111-112 ${ }^{\circ}$ (attempts to recrystallise this resulted in partial decomposition, but the melting point of the commercial sample agreed very closely with that given by Lile and Menzies ${ }^{3}$). Apparatus, techniques, symbols used, and methods of calculation have been described before. 1,2 The quantities $\Delta \varepsilon, \Delta d, \Delta n$, and ΔB are the differences found between the dielectric constants, densities, refractive indices, and Kerr constants, respectively, of benzene as solvent and of solutions in benzene containing weight fractions w_{2} of solute. The following data apply at 25° to benzene: $\varepsilon_{1}=2.2725 ; d_{1}=0.87378 ;\left(n_{\mathrm{D}}\right)_{1}=1.4973 ; 10^{7} B_{1}=$ 0.410 .

Previous Measurements.-The following dipole moments (D) have been recorded: triphenylphosphine oxide, $4 \cdot 31$ (in benzene), ${ }^{4} 4 \cdot 28$ (in benzene), ${ }^{5} 4 \cdot 49$ (in benzene), ${ }^{6} 4 \cdot 40$ (in p-xylene), ${ }^{7}$ 4.44 (in benzene) ; 8 triphenylphosphine sulphide, $4 \cdot 74$ (in benzene), ${ }^{4} 4 \cdot 73$ (in benzene); ${ }^{5}$ triphenylarsine oxide, $5 \cdot 50$ (in benzene); ${ }^{4}$ triphenylstibine sulphide, 5.40 (in benzene). ${ }^{4}$

Discussion

Triphenylphosphine Oxide and Sulphide.-The dipole moments and molar Kerr constants of the triphenyl derivatives of the Group VB elements $\left(\mathrm{Ph}_{3} \mathrm{M}\right.$ where $\left.\mathrm{M}=\mathrm{N}, \mathrm{P}, \mathrm{As}, \mathrm{Sb}, \mathrm{Bi}\right)$ have been analysed by Aroney, Le Fèvre, and Saxby, 9,10 to indicate that, in benzene solution, the phenyl groups in each molecule are rotated (in the same sense to preserve C_{3} symmetry) through angles ϕ, equal to $62^{\circ}, 59^{\circ}, 50^{\circ}, 41^{\circ}$, and 23° or 51°, respectively, from a model, having $\phi=0$, in which the Ph planes intersect along the symmetry axis. Similar considerations are now applied to determining the preferred molecular conformations of triphenylphosphine oxide and sulphide. Theoretical models have been examined for which $0<\phi<90^{\circ}$. The principal polarisability semi-axes ($b_{1} \neq b_{2}=b_{3}$) are calculable from the component group parameters through relationships similar to (1) and (2)

$$
\begin{gather*}
b_{1}\left(\mathrm{Ph} h_{3} \mathrm{PO}\right)=3\left\{b_{1}(\mathrm{Ph}) \cos ^{2} \theta+\left[b_{2}(\mathrm{Ph}) \cos ^{2} \phi+b_{3}(\mathrm{Ph}) \sin ^{2} \phi\right] \sin ^{2} \theta\right\}+b_{1}\left(\mathrm{C}_{3} \mathrm{PO}\right) \tag{1}\\
\Sigma b_{\mathrm{i}}\left(\mathrm{Ph}_{3} \mathrm{PO}\right)=3 \Sigma b_{\mathrm{i}}(\mathrm{Ph})+\Sigma b_{\mathrm{i}}\left(\mathrm{C}_{3} \mathrm{PO}\right) \tag{2}
\end{gather*}
$$

where θ, the angle between a $\mathrm{C}-\mathrm{P}$ longitudinal direction and the symmetry axis (see Fig. 1) has been taken, in each case, as 63°, in common with that calculated for triphenylphosphine

[^1]from a C-P-C bond angle of 101° (ref. 9, Table 5). Group polarisability specifications* $\left(b_{1}, b_{2}, b_{3}\right)$ used in the subsequent calculations are: $\mathrm{Ph} 10 \cdot 56,10 \cdot 56,6 \cdot 72 ;{ }^{11} \mathrm{C}_{3} \mathrm{PO} 4 \cdot 17,3 \cdot 36$, $3 \cdot 36$ (see text); $\mathrm{C}_{3} \mathrm{PS} 8 \cdot 70,5 \cdot 44,5 \cdot 44$ (see text). The polarisability semi-axes of the group $\mathrm{C}_{3} \mathrm{P}$: are estimated as $b_{1}=b_{2}=b_{3}=4 \cdot 11$ by addition of the apparent $\mathrm{C}-\mathrm{P}$ bond polarisabilities of ref. $9\left(b_{\mathrm{L}}=b_{\mathrm{T}}=b_{\mathrm{V}}=1 \cdot 37\right.$; the derivation of these values is such that they include contributions from the phosphorus lone-pair electrons). Specification of the $\mathrm{C}_{3} \mathrm{PO}$ group ellipsoid can be effected through equations (3) and (4).
\[

$$
\begin{gather*}
b_{1}\left(\mathrm{C}_{3} \mathrm{PO}\right)=b_{1}\left(\mathrm{C}_{3} \mathrm{P}:\right)+b_{\mathrm{L}}(\mathrm{PO})-b_{\mathrm{L}} \text { (lone pair) } \tag{3}\\
b_{2}\left(\mathrm{C}_{3} \mathrm{PO}\right)=b_{3}\left(\mathrm{C}_{3} \mathrm{PO}\right)=b_{2}\left(\mathrm{C}_{3} \mathrm{P}:\right)+b_{T}(\mathrm{PO})-b_{T}(\text { lone pair }) \tag{4}
\end{gather*}
$$
\]

Though the individual quantities $b_{\mathbf{i}}(\mathrm{PO})$ and $b_{\mathbf{i}}$ (lone pair) are not known, the differences $b_{\mathrm{L}}(\mathrm{PO})-b_{\mathrm{L}}$ (lone pair) and $b_{\mathrm{T}}(\mathrm{PO})-b_{\mathrm{T}}$ (lone pair) can be evaluated from the principal molecular polarisabilities recorded (in Table 4 of ref. 12) for 4-methyl-1-phospha-2,6,7trioxabicyclo $[2,2,2]$ octane and for the corresponding 1 -oxide. An analogous procedure is used to specify $b_{\mathrm{L}}(\mathrm{PS})-b_{\mathrm{L}}$ (lone pair) and $b_{\mathrm{T}}(\mathrm{PS})-b_{\mathrm{T}}$ (lone pair), and hence b_{1} and $b_{2}=b_{3}$ for the $\mathrm{C}_{3} \mathrm{PS}$ group. Calculations of the molecular polarisabilities and molar Kerr constants (by way of equation 5 , assuming ${ }_{\mathrm{D}} P / \mathrm{E} P=1 \cdot 1$) for the various conformations considered are summarised in Table 3.

$$
\begin{equation*}
{ }_{\mathrm{m}} K=2 \pi \mathrm{~N}\left[2_{\mathrm{D}} P\left(b_{1}-b_{2}\right)^{2} / 4 \mathbf{5}_{\mathrm{E}} P \boldsymbol{k} T+2 \mu^{2}(\text { obs. })\left(b_{1}-b_{2}\right) / 45 \boldsymbol{k}^{2} T^{2}\right] / 9 \tag{5}
\end{equation*}
$$

The observed molar Kerr constants are $-828 \times 10^{-12}\left(\mathrm{Ph}_{3} \mathrm{PO}\right)$ and $-446 \times 10^{-12}\left(\mathrm{Ph}_{3} \mathrm{PS}\right)$, in good agreement with the calculated values for rotations of 60° and 62°, respectively.

Table 3.
Polarisability semi-axes and molar Kerr constants calculated for conformations of (a) triphenylphosphine oxide and (b) triphenylphosphine sulphide.

(a)	ϕ	0°	50°	60°	70°	90°	
	b_{1}	$35 \cdot 85$	$30 \cdot 48$	28.99	27.77	26.70	
	$b_{2}=b_{3}$	29.28	31.97	32.71	33.32	33.86	
	$10^{12} \mathrm{~m} K$ (calc.)	+1484	-331	-821	- 1220	-1568	
(b) $\{$	ϕ	0°	50°	60°	62°	70°	90°
	b_{1}	$40 \cdot 38$	35.01	33.52	33.25	32-30	31.23
	$b_{2}=b_{3}$	31-36	34.05	34.79	34.93	$\mathbf{3 5} \cdot \mathbf{4 0}$	35.94
	$10^{12}{ }_{\mathrm{m}} K$ (calc.)	+2325	+244	-321	-424	-780	-1182

Utilisation in the above calculations of the alternative set of $\mathrm{C}-\mathrm{P}$ bond semi-axes ($b_{\mathrm{L}}=1 \cdot 16$; $b_{\mathrm{T}}=b_{\mathrm{V}}=1 \cdot 47$), which were derived, in ref. 9, from the empirical relationship of Le Fèvre, ${ }^{13}$ leads to $\phi=61^{\circ}\left(\mathrm{Ph}_{3} \mathrm{PO}\right)$ and $63^{\circ}\left(\mathrm{Ph}_{3} \mathrm{PS}\right)$. The corresponding value (ϕ) for triphenylphosphine is given as 59° (ref. 9). Thus we may conclude that the apparent conformations of triphenylphosphine, its oxide, and its sulphide are closely similar in benzene solution.

Conformations of the Molecules $\mathrm{Ph}_{3} \mathrm{AsO}, \mathrm{Ph}_{3} \mathrm{AsS}$, and $\mathrm{Ph}_{3} \mathrm{SbS}$. -The analytical procedure described previously for $\mathrm{Ph}_{3} \mathrm{PO}$ and $\mathrm{Ph}_{3} \mathrm{PS}$ cannot now be applied, as polarisability data (analogous to those quoted from ref. 12 and used subsequently in equations 3 and 4) are unavailable, so that we are unable to specify the anisotropic polarisabilities of the groups $\mathrm{C}_{3} \mathrm{AsO}, \mathrm{C}_{3} \mathrm{AsS}$, and $\mathrm{C}_{3} \mathrm{SbS}$. However, it is possible to derive the molecular polarisability

[^2]semi-axes for each of these molecules from the observed molar Kerr constant and the ${ }_{\mathrm{E}} P$ (taken as $0.95 R_{\mathrm{D}}$) by way of equations (5) and (6): $b_{1}=29.76, b_{2}=b_{3}=33.81\left(\mathrm{Ph}_{3} \mathrm{AsO}\right)$;
\[

$$
\begin{equation*}
{ }_{\mathrm{E}} P=4 \pi N\left(b_{1}+2 b_{2}\right) / 9 \tag{6}
\end{equation*}
$$

\]

$b_{1}=36 \cdot 14, b_{2}=b_{3}=37 \cdot 58\left(\mathrm{Ph}_{3} \mathrm{AsS}\right) ; b_{1}=37 \cdot 10, b_{2}=b_{3}=38 \cdot 58\left(\mathrm{Ph}_{3} \mathrm{SbS}\right)$. Table 4 lists the ratios b_{1} / b_{2} found for the Group VB triphenyls (calculated from the data of ref. 9) and for their oxides and sulphides.

Table 4.
Values of the ratio b_{1} / b_{2}.

M	N	P	As	Sb	Bi
$\mathrm{Ph}_{3} \mathrm{M}$	0.75	0.87	0.93	0.97	1.11
$\mathrm{Ph}_{3} \mathrm{MO}$	-	0.89	0.88		(0.90)
$\mathrm{Ph}_{3} \mathrm{MS}$	-	0.95	0.96	0.96	-

[^3]Within the group of molecules $\mathrm{Ph}_{3} \mathrm{P}, \mathrm{Ph}_{3} \mathrm{PO}$, and $\mathrm{Ph}_{3} \mathrm{PS}$, for which the angle ϕ is effectively invariant $\left(60 \pm 2^{\circ}\right)$, the b_{1} / b_{2} ratios appear also to be fairly constant (0.91 ± 0.04); cf. values of b_{1} / b_{2} for the extreme forms corresponding, respectively, to $\phi=0^{\circ}$ and $\bar{\phi}=90^{\circ}: 1 \cdot 19-0.77$ $\left(\mathrm{Ph}_{3} \mathrm{P}\right) ; 1.22-0.79\left(\mathrm{Ph}_{3} \mathrm{PO}\right) ; 1.29-0.87\left(\mathrm{Ph}_{3} \mathrm{PS}\right)$. For $\mathrm{Ph}_{3} \mathrm{As}, \mathrm{Ph}_{3} \mathrm{AsO}$, and $\mathrm{Ph}_{3} \mathrm{AsS}$ the ratios (b_{1} / b_{2}) lie within the range 0.92 ± 0.04, while for $\mathrm{Ph}_{3} \mathrm{Sb}$ and $\mathrm{Ph}_{3} \mathrm{SbS}$ they are practically identical. It may thus be inferred that $\mathrm{Ph}_{3} \mathrm{AsO}^{2}$ and $\mathrm{Ph}_{3} \mathrm{AsS}$ are conformationally similar to $\mathrm{Ph}_{3} \mathrm{As}$ (for which $\left.\phi=50^{\circ}\right)^{10}$ and that $\mathrm{Ph}_{3} \mathrm{SbS}$ resembles $\mathrm{Ph}_{3} \mathrm{Sb}\left(\phi=41^{\circ}\right) .{ }^{.}$

Apparent MO and MS Bond Polarity and Polarisability Increments.-The apparent MO or MS bond moments (defined as the change in the moment of $\mathrm{Ph}_{3} \mathrm{M}$ which accompanies the formation of the MO or MS bond) and the corresponding incremental changes in the molecular polarisability semi-axes are listed in Table 5. The appropriate parameters for the $\mathrm{Ph}_{3} \mathrm{M}$

Table 5.
Bond moments and incremental changes in molecular polarisability semi-axes.

	$\mathrm{PO}-\mathrm{P}:$	$\mathrm{PS}-\mathrm{P}:$	AsO-As:	AsS-As:	$\mathrm{SbS}-\mathrm{Sb}:$
$\Delta \mu(\mathrm{D})$	2.99	$\mathbf{3 . 2 9}$	$4 \cdot 18$	4.08	4.89
Δb_{1}	0.06^{*}	$\mathbf{4 \cdot 5 9}$	-1.67	4.71	3.79
$\Delta b_{2}=\Delta b_{3}$	-0.75^{*}	1.33^{*}	-0.05	3.72	$4 \cdot 17$

* Quoted from ref. 12 and applied to $\mathrm{Ph}_{3} \mathrm{PO}$ and $\mathrm{Ph}_{3} \mathrm{PS}$ in the previous discussion.
molecules have been taken from ref. 9. The present estimate of the apparent PO moment agrees well with that (2.95 D) recorded by Cumper et al., 8 and both values are slightly higher than the mean PO moment $(2.88 \mathrm{D})$ found ${ }^{8}$ in the tri-n-alkylphosphine oxides. This small difference has been attributed in most part to induced polarisation effects (see ref. 8, p. 434). The apparent moments of the $\mathrm{P}=\mathrm{O}$ and $\mathrm{P}-\mathrm{S}$ bonds in the phosphate and the thiophosphate "cage" molecules of ref. 12 are calculable, from the data of Brown, Verkade, and Piper, ${ }^{16}$ as 2.95 and 2.62 D , respectively. The latter value is somewhat lower than that (3.29) now found for the $\mathrm{P}-\mathrm{S}$ bond in $\mathrm{Ph}_{3} \mathrm{PS}$, and this may be indicative of contributions to the structure of

[^4]$\mathrm{Ph}_{3} \mathrm{PS}$ from the resonance forms shown in Fig. 2. Conjugative interactions of the benzene ring π-electrons with $\mathrm{P}-\mathrm{O}$ in $\mathrm{Ph}_{3} \mathrm{PO}$ are known to be very weak (refs. 17 and 18).

Calculation of the MO or MS bond refractions using classical valence-bond formulations (equation 7) results in negative values for PO and $\mathrm{AsO}(-1.4$ and -2.0 c.c., respectively;

$$
\begin{equation*}
R_{\mathrm{D}}(\mathrm{MO} \text { or } \mathrm{MS})=R_{\mathrm{D}}\left(\mathrm{Ph}_{3} \mathrm{MO} \text { or } \mathrm{Ph}_{3} \mathrm{MS}\right)-R_{\mathrm{D}}\left(\mathrm{Ph}_{3} \mathrm{M}\right) \tag{7}
\end{equation*}
$$

cf. Gillis ${ }^{19}$ who quotes the refraction of $\mathrm{P}-\mathrm{O}$ in phosphates as -1.22 c.c.), from which it may be deduced that $\alpha(\mathrm{P}=\mathrm{O})<\alpha$ (phosphorus lone pair), and $\alpha(\mathrm{As}=\mathrm{O})<\alpha$ (arsenic lone pair). The mean polarisability (α) is defined as $\left(b_{\mathrm{L}}+b_{\mathrm{T}}+b_{\mathrm{V}}\right) / 3$. Aroney, Le Fèvre, and Saxby ${ }^{12}$ have proposed that $b_{\mathrm{L}}(\mathrm{P}-\mathrm{O}) \approx b_{\mathrm{L}}$ (phosphorus lone pair) and that a $\mathrm{P}-\mathrm{O}$ bond is significantly less polarisable than the phosphorus lone-pair electrons only in the transverse directions.

Fig. 2.

Changes in the arsenic lone-pair polarisabilities on the formation of an $\mathrm{As}=\mathrm{O}$ bond cannot, however, be accurately predicted from the molecular increments Δb_{1} (AsO-As:) of Table 5, since the dispositions of the phenyl groups in the molecules $\mathrm{Ph}_{3} \mathrm{AsO}$ and $\mathrm{Ph}_{3} \mathrm{As}$, though similar, may not be identical. The empirical equation of Le Fèvre ${ }^{20}$ can be used to relate the quantity $b_{\mathrm{L}}\left(\mathrm{As}^{-\mathrm{S}} \mathrm{S}\right)-b_{\mathrm{L}}(\mathrm{As}-\mathrm{O})$ to the $\mathrm{As}{ }^{-} \mathrm{S}$ and $\mathrm{As}-\mathrm{O}$ stretching frequencies (495 and 881 $\mathrm{cm} .^{-1}$, respectively, from ref. 15) and the internuclear distances ($r \mathrm{As}-\mathrm{S}$) and $r(\mathrm{As}-\mathrm{O})$. An estimate ($1.69 \AA$) of $r\left(\mathrm{As}^{-\mathrm{O}}\right.$) is available from the crystal-structure determination ${ }^{21}$ of $\mathrm{HgCl}_{2}, 2 \mathrm{Ph}_{3} \mathrm{AsO}$. If then we assume that the phenyl groups in $\mathrm{Ph}_{3} \mathrm{AsS}$ and $\mathrm{Ph}_{3} \mathrm{AsO}$ are inclined equally to the molecular b_{1} directions, it follows that $b_{\mathrm{L}}(\operatorname{AsS})-b_{\mathrm{L}}(\operatorname{AsO})=$ $b_{1}\left(\mathrm{Ph}_{3} \mathrm{AsS}\right)-b_{1}\left(\mathrm{Ph}_{3} \mathrm{AsO}\right)=6.38$. Substitution of these values into Le Fèvre's equation ${ }^{20}$ leads to a predicted As=S bond length of $2 \cdot 16 \AA$.

The authors gratefully acknowledge the assistance of Mr. G. L. D. Ritchie in the measurement of the electric birefringences, the gifts of chemicals mentioned in the text, and the award of a Commonwealth Research Scholarship to J. D. S.

University of Sydney, Sydney, N.S.W., Australia.
[Received, August 20th, 1964.]
17 Halmann and Pinchas, J., 1958, 3264.
18 Kabachnik, Tetrahedron, 1964, 20, 655.
18 Gillis, Rev. Pure Appl. Chem. (Australia), 1960, 10, 21.
20 Le Fevre, Proc. Chem. Soc., 1959, 363.
21 Bränden, Acta Chem. Scand., 1963, 17, 1363.

[^0]: 1 Le Fèvre, " Dipole Moments," Methuen, London, 3rd edn., 1953.
 ${ }^{2}$ Le Fèvre and Le Fèvre, (a) Rev. Pure Appl. Chem. (Australia), 1955, 5, 261: (b) Chap. XXXVI in "Physical Methods of Organic Chemistry," ed. Weissberger, Interscience, New York and London, 3rd edn., vol. I, p. 2459.

[^1]: ${ }^{3}$ Lile and Menzies, J., 1950, 617.
 4 Jensen, Z. anorg. Chem., 1943, 250, 268.
 5 Phillips, Hunter, and Sutton, J., 1945, 146.
 ${ }^{6}$ Subbarayan, Ph.D. Thesis, Annamalai University, S. India, 1961.
 7 Fischer, Laulicht, and Pinchas, J. Phys. Chem., 1962, 66, 2708.
 8 Cumper, Foxton, Read, and Vogel, J., 1964, 430.
 ${ }^{9}$ Aroney, Le Fèvre, and Saxby, J., 1963, 1739.
 10 Aroney, Le Fèvre, and Saxby, Canad. J. Chem., 1964, 42, 1493.

[^2]: * Polarisability semi-axes of bonds, b_{L}, b_{T}, or b_{V}, or of groups or molecules, b_{1}, b_{2}, or b_{3}, are quoted throughout in 10^{-24} c.c. units.

 11 Aroney and Le Fèvre, $J ., 1960,3600$.
 12 Aroney, Le Fèvre, and Saxby, J., 1963, 4938.
 13 Le Fèvre, Proc. Chem. Soc., 1958, 283.

[^3]: * Triphenylstibine oxide though preparable ${ }^{14}\left(\mathrm{H}_{2} \mathrm{O}_{2}\right.$ and $\mathrm{Ph}_{3} \mathrm{Sb}$; m. p. $\left.295^{\circ}\right)$ was not sufficiently soluble in benzene to allow accurate determination of the dipole moment and molar Kerr constant. Measurements on very dilute solutions ($<0.05 \%$) appear to indicate that $\mu\left(\mathrm{Ph}_{3} \mathrm{SbO}\right) \sim 2 \mathrm{D}$, in agreement with Jensen's values ${ }^{4}$ for μ (tri-p-tolylstibine oxide) $=2.0 \mathrm{D}$ (in benzene) and 2.3 D (in dioxan). The present results support the conclusions of Jensen and Nielsen, ${ }^{15}$ gained from infrared spectral evidence, that $\mathrm{Ph}_{3} \mathrm{SbO}$ does not exist as individual molecules but as a pseudo-ionic polymeric form.

[^4]: 14 Goodgame and Cotton, J. Amer. Chem. Soc., 1960, 82, 5774.
 15 Jensen and Nielsen, Acta Chem. Scand., 1963, 17, 1875.
 16 Brown, Verkade, and Piper, J. Phys. Chem., 1961, 65, 2051.

